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Abstract: Wave propagation in disordered (random) media is the underlying theme.
Many types of wave propagation problems can most conveniently be analyzed in this
framework. Acoustic waves in the earth’s crust and shallow water (or surface gravity)
waves are two examples. The interaction of sound waves with the heterogeneities in the
earth’s crust is important in seismology. The interaction of surface gravity waves with
rough submerged obstructions has been analyzed extensively because of its importance
in oceanography. It is also important in the development of new techniques for analyzing
scattering problems in fluid mechanics.

The theory to be outlined in this paper had its first application in seismic exploration.
The earth is strongly heterogeneous, also on small scales, and it is important to describe
when and how fine scale heterogeneities interact with a traveling seismic pulse.

We are interested in pulse shaped waves that interact with the rapidly varying features
(i.e. microstruture) of the medium. The multiple scattering associated with the disordered
microstruture, leads to the apparent diffusion of the propagating pulse. That is, the pulse
diffuses about its moving center due to the multiple scattering of the wave energy.

We present a summary of the asymptotic theory that describes the interaction of a
propagating pulse with the medium’s microstructure. Also we describe the connection
between acoustic and shallow water pulse shaping or apparent diffusion. We consider
media having general smooth background variations, with a locally laminated disordered
microstructure. Theoretical results are validated through numerical experiments. Acous-
tic wave experiments are performed in a Goupillaud medium. In the context of water
waves the numerical model consists of a semi-implicit, semi-Lagrangian discretization of
the hydrostatic Navier—Stokes equation in three dimensions. We show that the numerical
experiments capture very well different types of behavior predicted by the theory.



1 Introduction

1.1 Motivation

Our objective is to discuss wave propagation in disordered or random media. That is,
we consider a wave pulse that propagates through a medium whose parameters vary ran-
domly. The main result we present in this paper is that the random medium fluctuations
cause the propagating pulse to broaden as it travels. Due to multiple scattered energy, the
pulse appears to diffuse about a moving center. The amount of broadening, or apparent
diffusion, of the wave pulse is proportional to the square root of the traveling distance.
Moreover, the apparent diffusion depends only on the traveling distance and the statistics
of the random medium fluctuations. Thus, the broadening can be described in a deter-
ministic way independently of the particular medium realization. However, as we show
below, the wvelocity of the wave pulse contains a small random component. In the sequel
we refer to the transformation of the pulse due to the microscale medium fluctuations as
pulse shaping.

In the effective medium approximation the random medium fluctuations are replaced
by a deterministic effective medium. This approximation is only valid for relatively short
propagation distances, on the order of a few pulse lengths. Wave propagation in the
effective medium is non-diffusive and does not capture the broadening of the pulse that
becomes important for long propagation distances.

The theory for pulse shaping was derived in the context of acoustic wave propagation
in the earth’s crust. We motivate the random medium model in terms of this application,
but also point out to other applications where the theory plays a role. We shall consider
a model medium that we define as a locally layered random medium. The locally layered
random medium has general, three dimensional, deterministic background variations with
a randomly locally laminated microstructure. The model is motivated by sedimentary rock
structures where sedimentary cycles produce a tilted stack of layers. On top of this local
variation there are coarse scale features that come from macroscopic geological events.
For such a medium we have analyzed [19, 21| the spreading of an acoustic pulse due to
the microscale variations in the medium parameters and in Section 5 we summarize the
results.

The motivation for modeling in terms of a random medium is that a detailed descrip-
tion of the effects of the rough microscale medium fluctuations are often not possible.
Moreover, the details of this fluctuations are typically not known. However, if we model
in terms of a random medium with known, perhaps slowly varying, statistics the accumu-
lated effect of the disordered or random component of the medium, can in many cases,
be characterized. With this approach, uncertainties about a specific medium are trans-
lated into uncertainties about a transmitted pulse shape in a systematic way. Moreover,
typical pulse shaping can be examined and characterized. For the problem at hand the
broadening of the pulse traveling through the earth’s crust can actually be described in a
deterministic way, to leading order, assuming that the statistics of the random variations
in the earth’s parameters are known.



1.2 Related work

If the medium is purely one-dimensional, or layered, the pulse shaping problem has been
studied extensively. In this case the behavior of the front of the pulse, over long distances,
can be analyzed using asymptotic results for stochastic ordinary differential equations
[11]. The study of the effect of fine scale layering on a propagating pulse was initiated by
O’Doherty and Anstey [18]. They give a quantitative explanation of the pulse shaping
in terms of the statistics of the reflection coefficients for a Goupillaud medium, that is,
a discretely layered medium in which the travel or transit time of each layer is constant.
Their motivation for studying pulse spreading was to explore whether scattering associated
with fine scale layering in the earth could explain the observed damping of seismic waves.
In a series of papers [1, 2, 3, 4, 5, 7, 12, 13, 20] the O’Doherty-Anstey approximation and
its generalizations have been rigorously derived, under various conditions for the medium
model. They all assume, however, a strictly layered medium.

In [19, 21] and this paper we follow the line of research initiated by O’Doherty and
Anstey, but consider more general three-dimensional wave propagation problems.

1.3 Outline of paper

In Section 2 we describe the model for the locally layered medium and the important
scaling assumptions concerning pulse width and magnitude of the medium fluctuations.
To fix ideas about pulse shaping we give a numerical example in Section 3. This example
concerns a model with a purely layered medium. In the absence of the microscale random
medium fluctuations the pulse propagation can be described in the geometrical optics or
high frequency approximation. In Section 4 we give a brief account for this approximation.
The main result characterizing pulse shaping in the locally layered random medium can be
seen as a combination of the geometrical optics approximation with pulse shaping theory
for a layered medium. We show this in Section 5 where we present the general pulse
shaping approximation. Finally, in Section 6 we discuss the pulse shaping approximation
in the context of shallow water waves propagating over a rough bottom and present 3D
numerical experiments.

2 Model

We consider acoustic pulse propagation in three space dimensions. A basic feature of the
medium model is that it varies on two scales: a macroscale corresponding to the total
travel distance and a microscale corresponding to that of the random fluctuations. The
width of the probing pulse is taken to be large relative to the microscale but small relative
to the macroscale. This scaling is relevant for seismic exploration where the pulse width
is chosen so that it can resolve large scale features. In the seismic exploration context the
total travel distance might be about 10km, the width of the pulse 100m and the scale of
the inhomogeneities 1m.

Following [21] let u(x, z,t) and p(z, z,t) be the acoustic velocity and pressure solving



the equations of conservation of momentum and mass

pur+Vp = f(t/e)é(x)é(z — z5)e (1)

K (z,2)pp+V-u = 0.

Here ¢ is time, z is depth into the medium and & = (x, z5) are the horizontal coordinates.

The parameters p and K_' are the density and compliance, f is the pulse shape and
e = (e1, ey, e3) is a source directivity vector. We let the source be located at (0,0, z;),
with z, < 0, and choose the halfspace z < 0 to be homogeneous. The parameter ¢ is the
ratio of the pulse width to the travel distance and is assumed small. The pulse width &
is intermediate between the size of the fluctuations 2 and the travel distance which is of
order 1. The density and compliance have the form

plx,z) = po (2)

Kt z2<0

K (z,2) = {K;l(m,z)(1+u(z)/82)) 2>0

£

The random modulation v(-) of the compliance is stationary with mean zero and finite,
decaying correlation function. In the general case v can be made to depend on a set of
smooth level curves ¢ : v = v(¢(z, 2)/e?)), see [19]. We refer to this medium as a locally
layered random medium. We are interested in the form of the transmitted pulse in such
a medium when p and w are zero initially.

The above scaling is not the only scaling of interest. In [19] we also analyze the case
where the medium fluctuations are weak, order €, and the probing pulse is supported on
the scale of the medium fluctuations, the scale 2. We are able to derive similar results
with this scaling as for the one discussed above.

The model is relevant in other applications as well. In Section 6 we point to its
significance in analyzing shallow water waves propagating over a rough bottom. We also
point out that disturbances propagating through mechanical structures are affected by
local variations of the medium parameters. The above model for wave-propagation is
relevant for instance in nondestructive testing of ‘wave’-fiber composites or laminates,
[9, 10]. We have presented the model in the context of sound propagation through the
earth’s crust, but it is relevant also for sound propagation through the ocean, [8].

3 Illustration of pulse shaping

In this section we give an example of pulse shaping for acoustic wave propagation in a
one-dimensional or purely layered medium. The medium is discretized into a Goupillaud
medium. Thus, the medium comprises a stack of layers where the transit time of each
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layer is constant, but the impedance in the different layers fluctuate randomly. The

impedance is £ = \/K.py. For simplicity we assume that the impedances in the different
layers are independent. The relative fluctuations are 10 % and normally distributed. For
a Goupillaud medium the pulse propagation can be simulated in a particularly efficient
way since only the pulse front need to be explicitly represented. On entering the stack of
layers the pulse is a Dirac delta function.

In Figure 1 we show transmitted pulse shapes after propagation through the discrete
medium. The 20 dotted lines correspond to propagation through different realizations
of the medium. The transmitted pulses are plotted at a fized depth and relative to the
arrival of the ‘leading’ pulse. The average number of medium layers for the chosen depth
is 10,000. Note that the travel time to the fixed depth (which depends on the realization)
is random. However, it can be shown that the average travel time for the pulses coincides
with the effective medium travel time.

Impulse responses based on data and analysis
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Figure 1: The transmitted pulse shape obtained by propagating an impulse through
realizations of the synthetic medium. The 20 dotted lines correspond to 20 different
realizations of the medium, all with the same length. Note that the travel time to this
fixed depth is random.

In Figure 2 we show the same pulses, but now plot them relative to the first arrival
time of each pulse at the given depth. When we center the pulses in this way it becomes
clear that the apparent diffusion or broadening of the pulse caused by the random medium
fluctuations is deterministic and independent of the particular realization. Recall that the
initial pulse profile was extremely thin, namely, a delta function. Note also that the center
of the impulse can be delayed relative to the accumulated transit time to the given depth.
The delay is on the order of the width of the transmitted pulse. The broadening can be
derived analytically based on the statistics of the medium fluctuations. The broadening
predicted by the pulse shaping theory is shown by the solid line.

For more examples along the same vein, but when the medium model is derived from
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Figure 2: The transmitted pulse shape obtained by propagating an impulse through
realizations of the synthetic medium. The 20 dotted lines correspond to 20 different
realizations of the medium, and are defined as in Figure 1. However, now they are plotted
relative to their first arrival time. Note that the transformation of the pulse shape is
deterministic and agrees well with the pulse shaping approximation shown by the solid
line.

sonic well logs, see [22].

4 The deterministic case

As mentioned above the pulse shaping approximation can be seen as a combination of
the geometrical optics approximation with the purely layered pulse shaping theory. Here,
we review brifely the geometrical optics approximation associated with acoustic wave
propagation from a point source.

A key assumption for the approximation to be valid is that the support of the propa-
gating pulse is short relative to the medium variations, as represented say by the (smooth)
variations in the local speed of sound c. When v = 0 in (2) then the local speed of sound

is ¢; = 1/K1/po and satisfy the assumption about slow variation. A central ingredient of

the geometrical optics approximation are the rays. For a point source these are smooth
line segments that emanate radially from the location of the source. The rays are per-
pendicular to the level curves or surfaces of the phase ¢ that solves the eiconal equation



Vol* = ™ (3)

The phase ¢ gives the travel time of the wave front. As the wave propagates in three
spatial dimensions it changes its shape due to variations in the local speed of sound and
other geometrical effects. This can be described, to leading order, by solving the first
transport equation along the geometrical optics rays.

5 Main result

When v # 0 the geometrical optics approximation described in the previous section is
not valid in general since the medium varies on a scale that is small relative to the
pulse support. For short propagation distances, however, the wave propagation can be
described by the geometrical optics approximation relative to the effective medium. For
long propagation distances the transmitted pulse can be described as the transmitted
pulse in the effective medium modified in a way that is analogous to the modification for
a purely layered medium discussed in Section 3. Below we describe the modification that
gives the apparent diffusion of the pulse due to scattering associated with the medium
microstructure.

Let u,p solve (1)—(3). Furthermore, let ¢ solve the eiconal equation (3) with a point
source at (0, zs). Note that this corresponds to solving the eiconal equation of the geo-
metrical optics approximation with respect to the deterministic part of the medium. This
deterministic part actually corresponds to the effective medium.

The net effect of the medium fluctuations can be described in the following way. For
z > 0, and with probability 1, we have

p(x,z,0+ x: +e5) ~ [GyrxN]|(s) as € 0. (4)

The function Gf(x, 2, (t—¢)/e) is the transmitted pressure when v = 0, that is, the trans-
mitted pressure in the effective medium which can be characterized by the geometrical
optics approximation. The pulse shaping function N is, in the simplest case, a centered
Gaussian distribution whose square width V' depends on the medium statistics. The con-
volution above is analogous to the one obtained with the heat kernel, thus justifying the
term apparent diffusion. The random variable y. is a travel time correction, and gives

the time frame in which the pulse shape stabilizes or becomes deterministic.

Let T be the part of the geometrical optics ray segment between the source location
(0, z5) and the observation point (&, z) that is located in the halfspace z > 0. For the
result (4) to be valid we need to assume that this ray segment is smooth and nowhere
horizontal. Then

vV = (Z/Q)/Fcl_2 cos(0)™t do
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Xe = /Fcl_llx/Q do (5)

I = /OOE[I/(O)I/(’U,)] do,

0

with o being arc-length along the path I' and cos(f) the angle between I" and the vertical
direction. The correlation length [ is a measure of the strength and coherence of the
microstructure (microscale medium fluctuations). A key step in deriving the above result
is to decompose the wave field in locally up and down propagating components. We
?escrib]e this decomposition in Appendix A. Additional technical details are given in
19, 21].

The approximation (4) generalizes the one-dimensional pulse shaping approximation.
It differs in that the random travel time correction x. and the square width of the mod-
ulating pulse, V', are defined as integrals over the geometrical optics path I'. In the
purely layered horizontal plane-wave case the pulse broadening and random travel time
correction are still given by (5) with the path I' specializing to (0, (0, z)).

As in the layered case illustrated in Figures 1 and 2 the approximation (4) modifies
the usual high frequency approximation for the effective medium in two important ways.

First, the arrival time of the transmitted pulse is random and given by

Te = @+ Xe-

Recall that ¢ is the travel time for the geometrical optics approximation of the effective
medium. By the central limit theorem it can be shown that . is a random variable that
is approximately normally distributed with variance V. Thus, the discrepancy between
the arrival time in the locally layered medium and the effective medium arrival time is a
mean-zero O(g) random quantity and is hence on the scale of the probing pulse. This is
clearly observed in Figure 1.

Second, the scattering associated with the fluctuations causes a smearing of the trav-
eling pulse. The asymptotic characterization of this phenomenon is through a convolution
with the Gaussian pulse M. The convolution is on the scale of the probing pulse, and hence
interacts strongly with its shape. The width of the Gaussian pulse is defined in terms of
moments of medium parameters along the path I' only, and does not depend on the par-
ticular realization. The pulse shaping, though only visible after a long traveling distance,
is a local phenomenon. The random modulation of the medium parameters, on the finest
scale of the model, causes energy to be scattered over to a ‘locally up-propagating’ wave
mode, but this energy is quickly scattered back again due to the fluctuations. Hence, only
a small amount of energy is carried by the up-propagating wave mode but it is important
because the continuous random channeling of energy gradually delays the pulse relative
to the first arrival and causes its shape to diffuse and approach a Gaussian. If there is a
lot of structure in the fluctuations, that is, strong correlations, then [ will be relatively
large. Coherence and strong variability in the random medium modulation means that
the random scattering is associated with a stronger smearing of the pulse. Observe that
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Figure 3: The figure illustrates pulse shaping in a locally layered medium. We plot the
pulse shapes as it evolves along two different geometrical optics ray paths. The dotted
lines correspond to the pulse shapes in the effective medium. The pulse shapes in the
locally layered medium are given by the solid lines. The blurring or smearing of the pulse
shapes is due to microscale scattering and is a deterministic effect. The travel time of the
pulse is corrected by a mean zero random variable.

the ‘effective’ correlation length is [/ cos(f). If the pulse propagates with a shallow angle
relative to the layering it ‘sees’ a medium with stronger coherence.

Figure 3 illustrates the above results. The paths I['; are geometric optics ray paths
associated with a point source at (0, zs) and o; the arc-length parameters along these
rays. For a set of travel times we plot the traveling pulse in the deterministic or effective
medium by the dotted lines. To leading order the evolution of the shapes along the rays
is described by the first order transport equations of the geometric optics approximation.
The solid lines illustrate the corresponding pulse shapes in the locally layered medium.
They are blurred somewhat due to scattering associated with the microscale medium
fluctuations. Moreover, the travel time along the ray is corrected by a mean zero random
variable. The diffusion depends only on the statistics of the medium fluctuations, whereas
the travel time correction depends on the detailed structure of the medium fluctuations
along the geometric optics ray path.



6 Pulse shaping for shallow water waves

We consider gravity driven surface waves, propagating in shallow channels, in a regime
where the fluid is considered to be inviscid, incompressible and the flow is irrotational.
Two water wave models in disordered media have been studied. The first is the linear,
one-dimensional, potential theory [14, 17]. The second is a nonlinear, three-dimensional,
shallow water model [15, 16].

For the potential theory model [23] the following characteristic scales are introduced:
the typical depth hy, typical wavelength A, typical amplitude a of the free surface elevation
n(z,t), horizontal length scale [, of the bottom irregularities and L the total length of the
rough region. When using dimensionless variables the following dimensionless E)arameters
appear: « = a/h, which controls the strength of the nonlinearity, 3 = hj/\? which
controls dispersion and v = [,/ which controls how rapidly the bottom irregularities vary.
The acceleration due to gravity is denoted by g and the reference shallow water speed

is co = (gho)*/?. Regimes of interest can be identified by expressing the dimensionless
parameters in terms of a small parameter € > 0 [23].

The problem studied in Nachbin & Papanicolaou [17] is linear (o« = 0). In order
to formulate the reflection-transmission problem a system of stochastic differential equa-
tions is derived for the amplitudes of the propagating and evanescent modes, obtained
from the eigenfunction decomposition of the time-harmonic velocity potential. The so-
lution to these equations is characterized asymptotically as a diffusion process through
the application of a limit theorem for stochastic differential equations. This allows the
characterization of the expected value of the transmission or reflection coefficient. Details
of the stochastic theory can be found in Asch et al. [1] and references therein.

In this paper we focus on the shallow water equations due to its analogy with the
acoustic model, a shown below. The starting point are the Navier—-Stokes equations
describing constant density, free surface flows of an incompressible fluid. The conservation
of momentum equations are

Up + Uy + VUy + WU, = —Pg + ((Ugg + Uyy) + VU, (6)
U+ UV + Uy + WU, = —py + (Vg + Vyy) + 10, (7)
Wy + UWy + VWy + WW, = =P, + U(Way + Wyy) + VW, — g. (8)

The conservation of mass equation is

Uy + vy +w, = 0. (9)

The horizontal z and y velocity components are u(x, y, z,t), v(x, y, z,t) and the z—vertical
component is w(x,y, z,t). Time is denoted by ¢, the normalized pressure by p(z, v, z, t)
(i.e. normalized by the constant density) and the horizontal and vertical viscosity coeffi-
cients by p and v, respectively.
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Integrating the continuity equation (9) over the depth (from the bottom topography
z = —h(z,y) up to the free surface z = n(z,y,t)) we obtain the following free surface
condition in conservative form:

n n
n + [/ udz] + [/ vdz
—h z —h

This calculation is exact and is obtained by applying the kinematic condition along the
free surface and the impermeability condition along the bottom [6].

=0. (10)

Y

A shallow water model is derived by adopting the hydrostatic pressure approximation

p(x,y,z,t) ~ pa(l‘,y,t) +g [n(xayat) - Z] .

Without loss of generality, the atmospheric pressure p, is assumed to be zero. The
hydrostatic approximation is commonly used in shallow water ocean, or atmospheric,
models. The vertical convection and diffusion terms are neglected, and the final form for
the system of partial differential equations to be solved is given by

Ut + YUy + VUy + WU, = — g7 + M(Um + Uyy) + VU, (11)

Vi + UV + VVy + WU, = —gNy + ,U,(’U;m + Uyy) + VU, (12)

n n
N+ [/ udz] + [/ vdz
~h « ~h

The vertical velocity component w is calculated from the conservation of mass equation.
We will refer to the system above as the hydrostatic Navier-Stokes model (HNS model).
Further conditions can be incorporated, such as for the tangential boundary stress along
the free surface and along the sediment—water interface. We omit these conditions since
they are not going to be taken into account in our experiments.

= 0. (13)

Y

A simplification takes place when we vertically-average over the water body: the
model reduces to the shallow water equations

Uy +UUy + VU, = —gny + ((Uzs + Uyy)

Vi+ UV +VVy=—gny + p(Vee + Vi)

m + [HU], + [HV], = 0.
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where the vertical averages are defined as

1 fm 1
U(x,y,t)zﬁ/hudz, V(x,y,t)zﬁ/_hvdz

and H (z,y,t) = n(z,y,t)+h(z,y). Linearizing about the undisturbed state, and switching
off the effect of viscosity, we obtain the linear shallow water model which can be written
in the form

T, + (gh)Vn =0 (14)
m+V-U=0, (15)

where the vector discharge function, per unit width, is given by ¥ = [Uh, VA]Y. The
analogy with the linear acoustic model

piy +Vp=0 (16)

7KE($,Z) pt-l-V-u:O (17)

is easily established. The variable shallow water propagation speed is given by ¢;(z,y) =

(ghi(z,y))'/?, where h(z,y) = hi(z,y)(1 + n(z,y)). The slowly varying background
topography is denoted by h;(x,y) and the rapidly varying, locally layered, features by
n(z,y). The former is called the macrostructure of the topography, while the latter the
microstructure. Recall that for acoustic waves the speed of sound is given by ¢ (x,z) =

(Ki(x,2)/p)"/2.

6.1 Interaction with the macrostructure of the topography

To apply ray theory we consider only the macrostruture of the topography since it is
slowly varying with respect to the pulse scale. This is the deterministic case presented
in section 4. Let a generic point be denoted by X = (x,y) and suppose that the wave
elevation can be written as

(X, t: Xo) = a(X; Xo)P (@) _
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The notation is such that the initial position of the pulse is Xy, its amplitude is given
by a and the phase (or travel time) denoted by 7. The pulse profile is denoted by P.
We substitute this ansatz into the shallow water equations. To leading order we get the
eiconal equation

\VT\Z =2

Let a ray (characteristic curve) be denoted by X (o) and the front propagation direction by
N = (ny,n3) = V7(0). Using the method of characterisctics we get Hamilton’s equations

dX
— = X,N
= = VNH(X,N)
dN
— = X,N
o = VXHXN),

where H(X,N) = 0.5 ¢|N|2. Subscript variables indicate partial differentiation. Apply-
ing to the shallow water model we have

dr/dt = g mnihi(z,y)

dy/dt = g nahi(z,y) (18)
dny/dt = —0.5 [In(hy(z,))],

The initial conditions are the initial position of the pulse (X(0) = Xjg) and the initial
direction (N = (n;(0),n2(0))) for the ray tracing. A ray segment (i.e. path I') is obtained
by solving the above system of ordinary differential equations. The initial conditions are
the starting point of the ray segment and its initial direction.

6.2 Interaction with the microstructure of the topography

We now consider the effect of the fine features of the topography, namely, the locally
layered irregularities which are rapidly varying with respect to the pulse scale. The result
is analogous to that of acoustic waves (c.f. section 5). Namely we have the apparent
diffusion of water waves is expressed by equation (4), with the pressure p(x, z,t) replaced
by the water elevation n(x,y,t). The pulse shaping function is also a Gaussian. The
schematic description for the pulse propagation is similar to that presented in figure 3,
with z replaced by y. In other words, for acoustic waves this figure represents a side view
of the earth’s crust. For water waves it represents a top view of the water body.
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7 Numerical model

The 3D equations (11-13) are considered in the inviscid regime. They are discretized by an
implicit, semi-Lagrangian technique which accomplishes the objective that the stability of
the scheme does not depend on the celerity. Based on a linear stability analysis Casulli &
Cheng [6] derived a scheme which treats implicitly the hydrostatic pressure gradient term
and the velocity terms in the free surface. This method is actually called a semi-implicit
scheme because, in the full model, the vertical diffusion term is discretized implicitly while
the horizontal diffusion discretization is kept explicit.

The spatial grid consists of rectangular cells, centered at (z;,y;, zx), of length Az, Ay

and height Azj%,. This height is interpreted as 'the thickness of tiﬂe k th layer of the 3D

grid. Because of the presence of the topography and free surface, this thickness can vary
in space and time (indicated by the superscript n). The convection terms are treated in a

Lagrangian form, through the discretization of the material derivative (D/Dt)7;. A fixed

staggered grid is defined on the horizontal planes, at the interface between vertical layers.
The numerical transport is performed in an Eulerian-Lagrangian manner, relying there-
fore on the interpolation of the respective grid point—values at the backward—characteristic
points of departure. Only one layer was used in the experiments presented below. Details
are given in Casulli & Cheng [6] and the references within.

7.1 Numerical experiments

We performed experiments to observe pulse propagation over different types of topogra-
phies. To normalize the wave celerity we change the acceleration due to gravity so that
the reference shallow water speed is always equal to one: (ghg) = 1 or ¢ = 1/hy. The
implicit scheme constant is taken to be # = 0.5 (Crank—Nicolson). This value minimizes
the numerical dissipation. Several validation experiments were performed in Nachbin [15]
and Nachbin & Casulli [16]. The experiments revealed that when the parameter o = 0.001
the waves propagate in the linear regime, whereas for & = 0.1 the regime is nonlinear and
the waves break into bores.

We synthetize a topography with ingredients geared towards observing features of the
theory. The macroscopic variations are such that the wave will have contrasting shallow
water speeds over different regions. The reference speed is still equal to one. To achieve
this goal we create a topography profile such that the macroscopic depth variation is given

by

hi(z,y) = hi(r,0) = hoo — a,7> cos(36),

with the constraint
hmin S hl (.Z‘, y) S hmam-

In figure 4 we have a topography where we used Ay, = 100, hAper = ho = 1000, depth
at the origin hgy = 500 and scale factor a, = 500. Note that the topography has three

14
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Figure 4: Slowly varying topography with a locally layered microstructure.

flat, mesa—like, shallow parts. Also it has three gorges (narrow passages) in between the
mesas.

The initial wave profile is an abandoned axisymmetric Gaussian mound of water. It
is abandoned at the center where we see a small square. Note that we have a sequence
of centered squares, each indicating a microscopic ridge (layer) with a random height.
The heights are uniformly distributed in [—30, 30]. This is our disordered microstructure.
Hence we have a locally layered topography.

We present the results for three different experiments. First we consider a flat topog-
raphy. As expected, the wave propagates in the radial direction as shown in Figure 5(A).
We use the same grid that is necessary for the topography with the microstructure: 1000
by 1000 grid points, with Az = Ay = 0.01 and At = 0.0025. We use one layer in the
vertical direction. Since we are the shallow water regime there is no need for a finner
vertical discretization. In the presence of the topography, a run with 2000 time steps
takes approximately 13 hours on a SGI Octane.

In the second experiment we consider only the macroscopic variations of the topog-
raphy. We are in the ray theory regime. The result is presented in Figure 5(B). We can
clearly see how the anular wave bends according to the depth variations. Note that in
the deeper regions the wave moves faster and becomes wider with a smaller amplitude.
On the other hand, over shallow regions the wave moves slower and peaks, due to mass
conservation. We have chosen an amplitude/depth ratio so that the wave does not break.
Recall that this linear—experiment is perfomed with a nonlinear code. The linear regime
is obtained by an appropriate choice of scaling parameters.

Finally we consider the full, locally layered topography. The wave profile is roughly the
same as in Figure 5(B). We do not present it here due to space constraint. It is important
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Figure 5: (A): Outgoing wave over a flat bottom. (B): Outgoing wave over the slowly
varying topography (i.e. without the microstructure).

to emphasize that the water body used is not large enough for apparent diffusion to be
fully developed. In the near future we will perform experiments with a larger grid and
longer propagation distances. But there is some indication of the wave interaction with
the microstructure. In Figure 6(A) we present a contour plot constrasting the two cases
above: topography with a microstructure (dashed line) and without (solid line). Note
that they are very similar over the deeper part but differ over the shallow regions. In
the shallow regions the peaked wave is delayed by the microstructure. The delay is in
the same direction as the rays. The separation between the contour lines is basically the
same, indicating that pulse broadening is not yet taking place. For this to happen we
need longer propagation distances, as we know from the theory. In Figure 6(B) we have
the wave profiles along the diagonal our grid. As a matter of fact, there is a very mild
indication of apparent attenuation. As mentioned above, we are investigating this issue
in more detail.
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CONTOUR PLOTS FOR WAVE ELEVATION PROFILE ALONG DIAGONAL OF THE GRID
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Figure 6: (A): Contour plots for the wave elevation. The dashed line represents the
experiment with the locally layered topography. The solid line represents the variable
topography without the microstructure. (B): Water elevation profile plotted along the
grid’s diagonal (7;;).
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A Decomposition of wave field

In order to derive the result (4) we decompose the pulse approximately into a superposition
of up and down going waves, which is analogous to what is done in the layered case with
plane waves :

p(x,2,t) = ///[A(x,z,w,n) ST (x2 R/ (19)

+ B(x, z,w, k) S xaR)/e)giwt/e ey
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In the layered case the phases are S* = k- & & 7(z) where 7(2) = [ \/po/K1(2)dz is the

travel time and A = A(k, z,w), B = B(k, z,w) the down and up going wave amplitudes.
This amounts to a Fourier representation relative to horizontal space variables. In the
locally layered case we cannot take the horizontal Fourier transforms. Now the phases S*
solve the eiconal equation

(VS%)? = #;;Z) = c7%(x, 2) (20)

associated with the deterministic effective medium parameters. In the purely layered case
these are plane wave phases. The appropriate coupling between the amplitudes A and B
of the locally up and down going wave fields is dictated by the microscale structure. This
leads to the generalized transport equations

VSt . VA+ ASTA —i(w/e)c[? v{A+ B ¢“®/} = Rt (21)

2VS™ -VB+ AS™B —i(w/e)e;? v{B + A ei“"I’Z/S} =R,

Here R* are lower order terms, ®; are phase functions and A, B are the wave amplitudes
A, B at a different k argument. We have thus reduced the original problem to the analysis
of these transport equations, which are complicated stochastic equations. They contain,
however, the simplifications that come from the geometrical acoustics approximation in
the locally layered medium and this enables us to push through the analysis that leads
to the approximation (4). When the random fluctuation v = 0, the transport equations
decouple into the usual ones of geometrical acoustics for the local wave amplitudes A and
B. In the layered case, R* = 0 and equation (21) simplify to the stochastic ordinary
differential equations (2.27) in [1].
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